quality

Analog Block I/O Module

Cat. No. 1791-N4C2

Installation

Mount the block I/O module in a vertical (recommended) or horizontal position. Allow sufficient room around the block for cooling air flow through the block module. Refer to Figure 1.

Figure 1
Mounting Dimensions for the Analog Block I/O Module Cat. No. 1791-N4C2

CAUTION: When tightening grounding stud nut, do not exceed 15 in-lbs.

Figure 2

Mounting on a DIN Rail

Block

1. Hook top of slot over DIN rail.
2. While pressing block against rail, pull down on locking lever.
3. When block is flush against rail, push up on locking lever to secure block to rail.

Figure 3
Inserting Labels

Labels for the front door and terminal strip are supplied with your module.

1. Remove die-cut labels from package.
2. Remove plastic cover on terminal strip by flexing in middle. Slip terminal designation label into built-in holders in terminal strip cover. Flex cover to install.
3. Open clear front door. Insert module designation label into slots that secure it to the door.

Connect wiring as shown in Figure 4, Figure 5 or Figure 6.

Figure 4
Wiring Connections for the Analog Block Module with Voltage Input (refer to Table A)

Analog signals must be within the +10 V common mode voltage range which is referenced to the analog system common (GND). If an input channel floats outside of this range, invalid input readings will result.

Figure 5
Wiring Connections for the Analog Block Module with Current Input and Customer-Supplied Loop Power (refer to Table A)

ATIENTION: The 249 ohm input current shunt is rated at 0.25 Watts. Do not exceed this rating.

Figure 6
Wiring Connections for the Analog Block Module with Current Input and Block-Supplied Loop Power (refer to Table A)

ATIENTION: The 249 ohm input current shunt is rated at 0.25 Watts. Do not exceed this rating.

The block I/O module has an equipment grounding stud on the lower left side of the module. Connect this grounding stud to your equipment ground. Torque the nut to 15 in-lbs maximum when connecting to your equipment ground.

ATTENTION: Do not overtighten the nut on the grounding stud when connecting the wire. Damage to the module could result.

Refer to "Programmable Controller Wiring and Grounding Guidelines" (1770-4.1) for further information.

Table A
Wiring Block Designations

Connections	1791-N4C2		
	Designation	Description	Terminal No.
Power Connections	L1	ac hot	1
	N	ac neutral	3
	GND	Chassis ground	2^{1}
Transducer Power ${ }^{2}$	+24V	For current input only	25
Remote I/O Connections	BLU	Blue wire - RIO	6
	CLR	Clear wire - RIO	8
	SHD	Shield - RIO	7
I/O Connections			
Voltage Input	inV0 thru inV3	Voltage Input 0 through 3	9, 13, 17, 21
	RET in0 thru RET in3	Input Return 0 through 3	10, 14, 18, 22
Current Input	inl0 thru inl3	Current Input 0 through 3	11, 15, 19, 23
	RET in0 thru RET in3	Input Return 0 through 3	10, 14, 18, 22
Input Ground	GNDin0-GNDin3	Channels 0-3 ground	12, 16, 20, 24^{3}
Output	out 0 - RET out 0	$\begin{gathered} \text { Output } 0(+) \\ \text { Return output } 0 \text { (-) } \end{gathered}$	$\begin{gathered} 27 \\ 26^{4} \end{gathered}$
	out 1 - RET out 1	$\begin{gathered} \text { Output } 1 \text { (+) } \\ \text { Return output } 1 \text { (-) } \end{gathered}$	$\begin{gathered} 29 \\ 28^{4} \end{gathered}$
	Not used	For internal test only; not for customer use.	4, 5, 30
1 Connect chassis ground to equipment grounding stud. These are not internally connected. $20-28 \mathrm{~V}$ dc (nominal $24 \mathrm{~V}, 100 \mathrm{~mA}$) voltage source for accommodating loop-powered current transducer inputs. Terminals $12,16,20$, and 24 are internally connected together. 4 Terminals 26 and 28 are internally connected together.			

Table B
Acceptable Wiring Cables for Block I/O Connection

Use	Cable Type
Remote I/O link	Belden 9463
Input and output wiring	Up to 14AWG $\left(2 \mathrm{~mm}^{2}\right)$ stranded with 3/64 inch insulation

Figure 7
Switch Settings

1747-SN Rack Number	1771-SN Rack Number	PLC-2 Rack Number	PLC-5 Rack Number	$\begin{aligned} & \text { PLC-5/250 } \\ & \text { Rack } \\ & \text { Number } \end{aligned}$	PLC-3 Rack Number	SW1 Switch Position					
						8	7	6	5	4	3
Rack 0	Rack 1	Rack 1	Not Valid	Rack 0	Rack 0	0	0	0	0	0	0
Rack 1	Rack 2	Rack 2	Rack 1	Rack 1	Rack 1	0	0	0	0	0	1
Rack 2	Rack 3	Rack 3	Rack 2	Rack 2	Rack 2	0	0	0	0	1	0
Rack 3	Rack 4	Rack 4	Rack 3	Rack 3	Rack 3	0	0	0	0	1	1
	Rack 5	Rack 5	Rack 4	Rack 4	Rack 4	0	0	0	1	0	0
	Rack 6	Rack 6	Rack 5	Rack 5	Rack 5	0	0	0	1	0	1
	Rack 7	Rack 7	Rack 6	Rack 6	Rack 6	0	0	0	1	1	0
			Rack 7	Rack 7	Rack 7	0	0	0	1	1	1
			Rack 10	Rack 10	Rack 10	0	0	1	0	0	0
			Rack 11	Rack 11	Rack 11	0	0	1	0	0	1
			Rack 12	Rack 12	Rack 12	0	0	1	0	1	0
			Rack 13	Rack 13	Rack 13	0	0	1	0	1	1
			Rack 14	Rack 14	Rack 14	0	0	1	1	0	0
			Rack 15	Rack 15	Rack 15	0	0	1	1	0	1
			Rack 16	Rack 16	Rack 16	0	0	1	1	1	0
			Rack 17	Rack 17	Rack 17	0	0	1	1	1	1
			Rack 20	Rack 20	Rack 20	0	1	0	0	0	0
			Rack 21	Rack 21	Rack 21	0	1	0	0	0	1
			Rack 22	Rack 22	Rack 22	0	1	0	0	1	0
			Rack 23	Rack 23	Rack 23	0	1	0	0	1	1
			Rack 24	Rack 24	Rack 24	0	1	0	1	0	0
			Rack 25	Rack 25	Rack 25	0	1	0	1	0	1
			Rack 26	Rack 26	Rack 26	0	1	0	1	1	0
			Rack 27	Rack 27	Rack 27	0	1	0	1	1	1
				Rack 30	Rack 30	0	1	1	0	0	0
				Rack 31	Rack 31	0	1	1	0	0	1
				Rack 32	Rack 32	0	1	1	0	1	0
				Rack 33	Rack 33	0	1	1	0	1	1
				Rack 34	Rack 34	0	1	1	1	0	0
				Rack 35	Rack 35	0	1	1	1	0	1
				Rack 36	Rack 36	0	1	1	1	1	0
				Rack 37	Rack 37	0	1	1	1	1	1
					Rack 40	1	0	0	0	0	0
					Rack 41	1	0	0	0	0	1
					Rack 42	1	0	0	0	1	0
					Rack 43	1	0	0	0	1	1
					Rack 44	1	0	0	1	0	0
					Rack 45	1	0	0	1	0	1
					Rack 46	1	0	0	1	1	0
					Rack 47	1	0	0	1	1	1
					Rack 50	1	0	1	0	0	0

1747-SN Rack Number	1771-SN Rack Number	PLC=? Rack Number	PLC-5 Rack Number	PLC=6/250 Rack Number	PLC=3 Rack Number	SW1 Switch Position					
						8	7	6	5	4	3
					Rack 51	1	0	1	0	0	1
					Rack 52	1	0	1	0	1	0
					Rack 53	1	0	1	0	1	1
					Rack 54	1	0	1	1	0	0
					Rack 55	1	0	1	1	0	1
					Rack 56	1	0	1	1	1	0
					Rack 57	1	0	1	1	1	1
					Rack 60	1	1	0	0	0	0
					Rack 61	1	1	0	0	0	1
					Rack 62	1	1	0	0	1	0
					Rack 63	1	1	0	0	1	1
					Rack 64	1	1	0	1	0	0
					Rack 65	1	1	0	1	0	1
					Rack 66	1	1	0	1	1	0
					Rack 67	1	1	0	1	1	1
					Rack 70	1	1	1	0	0	0
					Rack 71	1	1	1	0	0	1
					Rack 72	1	1	1	0	1	0
					Rack 73	1	1	1	0	1	1
					Rack 74	1	1	1	1	0	0
					Rack 75	1	1	1	1	0	1
					Rack 76	1	1	1	1	1	0
					Not Valid	1	1	1	1	1	1

Rack address 77 is an illegal configuration.
PLC-5/11 processors can scan rack 03.
PLC-5/15 and PLC-5/20 processors can scan racks 01-03.
PLC-5/25 and PLC-5/30 processors can scan racks 01-07.
PLC-5/40 and PLC-5/40L processors can scan racks 01-17.
PLC-5/60 and PLC-5/60L processors can scan racks 01-27.
PLC-5/250 processors can scan racks $00-37$.
The SLC 500 controllers communicate with the block I/O using an I/O Scanner module (cat. no. 1747-SN series A). Refer to the user manual for the 1747-SN/A Scanner module for more information.

Note: This block I/O module is not compatible with the 1747-DSN Distributed I/O Scanner module.

Termination Resistor

A termination resistor must be installed on the last block in a series. Connect the resistor as shown in Figure 8.

Figure 8
Installing the Termination Resistor

ATTENTION: Devices that are operating at 230.4 K baud must have 82 ohm terminators in place for proper operation.

Indicators

Indication		Description
Power	OFF	
	ON	

Power okay\end{array}\right]\)| COMM | OFF | Communication not established |
| :--- | :--- | :--- |
| | ON | |
| Communication established | | |
| Reset commands being received in Program mode | | |

COMM and FAULT will alternately flash when processor restart lockout is selected, a fault has occurred and the processor is communicating with the block.

1791-N4C2 Specifications

Input Specifications	
Inputs per Block	4 Selectable
Type of Input	$\begin{aligned} & \hline \pm 10 \mathrm{~V}(14 \mathrm{bit}) \\ & \pm 5 \mathrm{~V}(14 \mathrm{bit}) \\ & 0-10 \mathrm{~V}(14 \mathrm{bit}) \\ & 0-5 \mathrm{~V}(14 \mathrm{bit}) \\ & 0-20 \mathrm{~mA}(14 \text { bit }) \\ & \pm 20 \mathrm{~mA}(14 \text { bit }) \end{aligned}$
Update Rate per Channel	108ms
Input Impedance	Voltage: 10 megohm Current: 249 ohm
Absolute Accuracy	0.1\% @ 25 ${ }^{\circ} \mathrm{C}$
Linearity	0.05\% @ 250
Common Mode Rejection	-75db
Normal Mode Rejection	$\begin{aligned} & \hline-18 \mathrm{db} @ 50 \mathrm{~Hz} \\ & -20 \mathrm{db} @ 60 \mathrm{~Hz} \end{aligned}$
Output Specifications	
Outputs per Block	2
Output Current Range	0-20mA (13 bits)
Output Impedance	Greater than 1 megohm
Internal Update Rate per Channel	10 ms
Drive Capability	20 mA into loads of 1 K ohms or less
Short Circuit Protection	Indefinite
Absolute Accuracy	0.1\% @ 25 ${ }^{\circ} \mathrm{C}$
Linearity	0.05\% @ 25º (over 4-20mA range)
Overall Accuracy Drift	$75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Specifications continued on next page	

1791-N4C2 Specifications

General Specifications	
Number of Channels Input Output	$\begin{array}{\|l\|} \hline 4 \\ 2 \end{array}$
Resolution	14 bits full scale inputs 13 bits full scale outputs
Input Band Width	5 Hz
$\begin{array}{ll}\text { Overvoltage Protection } & \text { Input } \\ & \text { Output }\end{array}$ ATTENTION: The 249 ohm input current shunt is rated at 0.25 Watts. Do not exceed this rating.	$\begin{aligned} & \hline 140 \mathrm{~V} \text { ac } \\ & 140 \mathrm{~V} \text { ac } \end{aligned}$
$\begin{array}{ll}\text { External Power } & \text { Voltage } \\ & \text { Current }\end{array}$	$\begin{aligned} & \hline 85-132 \mathrm{~V} \text { ac, } 47-63 \mathrm{~Hz} \\ & 150 \mathrm{~mA} \end{aligned}$
Dimensions Inches Millimeters	$\begin{array}{\|l\|} \hline 6.95 \mathrm{H} ~ X ~ 2.7 W ~ X ~ 3.85 D ~ \\ 176.5 \mathrm{H} \times 68.8 \mathrm{~W} \text { X 98D } \end{array}$
Isolation Inputs to Outputs Power and Chassis to I/O RIO and Chassis to world	500 V ac 1000 V ac 1000 V ac
Power Dissipation Maximum	16.9 Watts
Thermal Dissipation Maximum	57.63 BTU/hr
Environmental Conditions Operational Temperature Storage Temperature Relative Humidity	0 to $60^{\circ} \mathrm{C}$ (32 to $140^{\circ} \mathrm{F}$) -40 to $85^{\circ} \mathrm{C}$ (-40 to $185^{\circ} \mathrm{F}$) 5 to 95% noncondensing
Conductors Wire Size Category	14 gauge ($2 \mathrm{~mm}^{2}$) stranded maximum $3 / 64$ inch insulation maximum 1^{1}

${ }^{1}$ You use this conductor category information for planning conductor routing as described in the system level installation manual.

With offices in major cities worldwide

